
Integer Linear Programming, Min-Max,

Max-Min, Energy Barriers, and Enumeration of

Solutions in a Chemical Reaction Network

Daniel Merkle

May 9, 2025

Contents

1 Introduction 1
1.1 Knapsack Problem Example . 2

2 Min-Max, Max-Min, Exercises 4
2.1 Exercise 1 . 4
2.2 Exercise 2 . 5
2.3 Exercise 3 . 6
2.4 Exercise 4 . 7

3 Energy Barriers, Min-Max, and Enumeration of Solutions in
CRNs 8
3.1 Enumeration - Introduction and Exercise 8
3.2 Energy barriers - Introduction and Exercise 9

1 Introduction

In this set of exercises, we will explore min-max optimization problems, which
are crucial in various fields such as operations research, computer science, and of
course when considering chemical reaction networks. Min-max problems involve
finding the minimum of the maximum values or the maximum of the minimum
values under certain constraints. These problems can often be challenging and,
in some cases, are NP-complete (we will see that ont of the following problems
will allow us to solve the subset sum problem).

We will start with relatively simple problems that could for sure be solved
without integer linear programming (ILP) tools. As we progress, we will tackle
more complex problems that inherently solve NP-complete problems as a side
effect. In later exercises, we will apply the techniques learned here to real-world
scenarios, such as optimizing chemical reaction networks.

1

Daniel Merkle Algorithms in Cheminformatics, 2025

To illustrate how to use Gurobi with Python for solving optimization prob-
lems, we will first solve a classical problem known as the Knapsack Problem.

All example code, code templates, and solutions (soon, not right now) can
be found on the webpage of the lecture here: https://ac2025.algochem.

techfak.de/

1.1 Knapsack Problem Example

Problem Statement: Given a set of items, each with a weight and a value,
determine the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is as large as
possible.

Example: Consider the following items with their weights and values:

• Item 1: weight = 2, value = 3

• Item 2: weight = 3, value = 6

• Item 3: weight = 4, value = 5

• Item 4: weight = 5, value = 8

The weight limit of the knapsack is 5.

Decision Variables

xi for i = 1, 2, . . . , n (xi ∈ {0, 1})

Here, xi is a binary variable indicating whether item i is included in the knapsack
(1) or not (0).

Objective Function

Maximize

n∑
i=1

vi · xi

Where vi is the value of item i.

Constraints
n∑

i=1

wi · xi ≤ W

Where wi is the weight of item i, and W is the maximum weight capacity of
the knapsack.

Page 2

https://ac2025.algochem.techfak.de/
https://ac2025.algochem.techfak.de/

Daniel Merkle Algorithms in Cheminformatics, 2025

Solution to the Example

To solve this example, we use the following decision variables:

x1 = 1, x2 = 1, x3 = 0, x4 = 0

This means we include item 1 and item 2 in the knapsack.

• Total weight = 2 · 1 + 3 · 1 + 4 · 0 + 5 · 0 = 5

• Total value = 3 · 1 + 6 · 1 + 5 · 0 + 8 · 0 = 9

Python Code using Gurobi:

1 import gurobipy as gp

2 from gurobipy import GRB

3

4 def solve_knapsack(weights, values, capacity):

5 # Number of items

6 n = len(weights)

7

8 # Create a new model

9 model = gp.Model("knapsack")

10

11 # Create variables

12 x = model.addVars(n, vtype=GRB.BINARY, name="x")

13

14 # Set objective: maximize total value

15 model.setObjective(gp.quicksum(values[i] * x[i] for i in range(n)),

GRB.MAXIMIZE)

16

17 # Add constraint: total weight must be less than or equal to capacity

18 model.addConstr(gp.quicksum(weights[i] * x[i] for i in range(n)) <=

capacity, "capacity")

19

20 # Optimize the model

21 model.optimize()

22

23 # Print the results

24 if model.status == GRB.OPTIMAL:

25 print("Optimal solution found")

26 selected_items = [i for i in range(n) if x[i].x > 0.5]

27 print(f"Selected items: {selected_items}")

28 print(f"Total value: {model.objVal}")

29 else:

30 print("No optimal solution found")

31

32 if __name__ == "__main__":

33 # Example data

34 weights = [2, 3, 4, 5]

35 values = [3, 6, 5, 8]

36 capacity = 5

37

38 solve_knapsack(weights, values, capacity)

Page 3

Daniel Merkle Algorithms in Cheminformatics, 2025

2 Min-Max, Max-Min, Exercises

Each exercise in this document is divided into three parts: a) an example and
solving it, b) the mathematical formulation, which includes defining decision
variables, the objective function, and the constraints, and c) the implementation
using Python and Gurobi.

2.1 Exercise 1

Problem Statement: Consider i variables xj for j = 0, 1, . . . , i− 1 such that
m ≤ xj ≤ M . You need to select which variables xj are chosen for the sum, such
that the sum of the chosen variables equals a given target sum. Additionally,
you want to minimize the maximum value among the chosen variables.

a) Example

For i = 10, m = 0, M = 20, and the target sum = 100, solve the problem with
pen, paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 4

Daniel Merkle Algorithms in Cheminformatics, 2025

2.2 Exercise 2

Problem Statement: Consider i variables xj for j = 0, 1, . . . , i− 1 such that
m ≤ xj ≤ M . You need to select which variables xj are chosen for the sum, such
that the sum of the chosen variables equals a given target sum. Additionally,
you want to maximize the minimum value among the chosen variables.

a) Example

For i = 10, m = 0, M = 20, and the target sum = 100, solve the problem with
pen, paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 5

Daniel Merkle Algorithms in Cheminformatics, 2025

2.3 Exercise 3

Problem Statement: Consider the numbers 5, 8, 15, 21, 22, 25, 26, 27, 36, 50.
For each xj , let xj be one of the given numbers. Select which variables xj are
chosen for the sum, such that the sum of the chosen variables equals 100. Addi-
tionally, you want to minimize the maximum value among the chosen variables.

a) Example

For the given numbers and the target sum = 100, solve the problem with pen,
paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 6

Daniel Merkle Algorithms in Cheminformatics, 2025

2.4 Exercise 4

Problem Statement: Consider the numbers 5, 8, 15, 21, 22, 25, 26, 27, 36, 50.
For each xj , let xj be one of the given numbers. Select which variables xj are
chosen for the sum, such that the sum of the chosen variables equals 100. Addi-
tionally, you want to maximize the minimum value among the chosen variables.

a) Example

For the given numbers and the target sum = 100, solve the problem with pen,
paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 7

Daniel Merkle Algorithms in Cheminformatics, 2025

3 Energy Barriers, Min-Max, and Enumeration
of Solutions in CRNs

3.1 Enumeration - Introduction and Exercise

The following code provides all hyperedges of a chemical reaction network un-
derlying the non-oxidative pentose phosphate pathway (PPP) and should be
considered as an example only. Details can be found in the additional material.
Below is the python/Gurobi code to find an optimal solution using the sum of
flows as an objective. In addition, we enforce, among other flows, the inflow
of Fructose-6-Phosphate and the outflow of Fructose-6-Phosphate. Here is the
code to find an optimal solution, using balance constraints:

1 hyperedges = {

2 3: ([’Ribulose-5-Phosphate’], [’p_{0,0}’]),

3 6: ([’Ribulose-5-Phosphate’, ’p_{0,0}’], [’p_{0,1}’, ’p_{0,2}’]),

4 9: ([’p_{0,1}’, ’p_{0,2}’], [’Fructose-6-Phosphate’, ’p_{0,3}’]),

5 11: ([’p_{0,0}’, ’p_{0,1}’], [’p_{0,3}’, ’p_{0,4}’]),

6 13: ([’Ribulose-5-Phosphate’, ’p_{0,2}’], [’Fructose-6-Phosphate’,

’p_{0,5}’]),

7 14: ([’Fructose-6-Phosphate’, ’p_{0,3}’], [’Fructose-6-Phosphate’,

’p_{0,3}’]),

8 16: ([’Fructose-6-Phosphate’, ’p_{0,5}’], [’p_{0,3}’, ’p_{0,6}’]),

9 17: ([’Fructose-6-Phosphate’, ’p_{0,2}’], [’Ribulose-5-Phosphate’,

’p_{0,3}’]),

10 18: ([’Fructose-6-Phosphate’, ’p_{0,0}’], [’p_{0,1}’, ’p_{0,3}’]),

11 20: ([’p_{0,3}’, ’p_{0,4}’], [’Fructose-6-Phosphate’, ’p_{0,7}’]),

12 21: ([’Ribulose-5-Phosphate’, ’p_{0,3}’], [’Fructose-6-Phosphate’,

’p_{0,2}’]),

13 22: ([’p_{0,1}’, ’p_{0,3}’], [’Fructose-6-Phosphate’, ’p_{0,0}’]),

14 23: ([’p_{0,4}’, ’p_{0,5}’], [’p_{0,6}’, ’p_{0,7}’]),

15 24: ([’p_{0,2}’, ’p_{0,4}’], [’Ribulose-5-Phosphate’, ’p_{0,7}’]),

16 25: ([’p_{0,0}’, ’p_{0,4}’], [’p_{0,1}’, ’p_{0,7}’]),

17 26: ([’Ribulose-5-Phosphate’, ’p_{0,5}’], [’p_{0,2}’, ’p_{0,6}’]),

18 27: ([’p_{0,1}’, ’p_{0,5}’], [’p_{0,0}’, ’p_{0,6}’]),

19 29: ([’p_{0,2}’], [’p_{0,8}’]),

20 31: ([’p_{0,0}’, ’p_{0,8}’], [’p_{0,9}’]),

21 33: ([’p_{0,2}’, ’p_{0,8}’], [’p_{0,10}’]),

22 36: ([’H2O’, ’p_{0,9}’], [’p_{0,11}’, ’p_{0,12}’]),

23 37: ([’H2O’, ’p_{0,9}’], [’p_{0,4}’, ’p_{0,11}’]),

24 39: ([’H2O’, ’p_{0,10}’], [’p_{0,11}’, ’p_{0,13}’]),

25 40: ([’H2O’, ’p_{0,10}’], [’Fructose-6-Phosphate’, ’p_{0,11}’]),

26 41: ([], [’H2O’]),

27 42: ([], [’Ribulose-5-Phosphate’]),

28 43: ([’Fructose-6-Phosphate’], []),

29 44: ([’p_{0,11}’], [])

30 }

31

32 # Create the model

33 model = Model(’HypergraphFlow’)

34

35 # Create variables

36 x = {}

37 for e_id in hyperedges:

38 x[e_id] = model.addVar(vtype=GRB.INTEGER, name=f’x_{e_id}’)

Page 8

Daniel Merkle Algorithms in Cheminformatics, 2025

39

40 # Update model to integrate new variables

41 model.update()

42

43 # Flow conservation constraints

44 vertices = set(v for e in hyperedges.values() for v in e[0] + e[1])

45

46 for v in vertices:

47 inflow = quicksum(x[e_id] for e_id, e in hyperedges.items() if v in e[1])

48 outflow = quicksum(x[e_id] for e_id, e in hyperedges.items() if v in

e[0])

49 model.addConstr(inflow == outflow, name=f’flow_conservation_{v}’)

50

51 # Specific inflow and outflow constraints

52 model.addConstr(x[41] == 1, name=’inflow_H2O’)

53 model.addConstr(x[42] == 6, name=’inflow_Ribulose_5_Phosphate’)

54 model.addConstr(x[43] == 5, name=’outflow_Fructose_6_Phosphate’)

55 model.addConstr(x[44] == 1, name=’outflow_p_0_11’)

56

57 # Objective function: Minimize the sum of flows

58 model.setObjective(quicksum(x[e_id] for e_id in hyperedges), GRB.MINIMIZE)

59

60 # Optimize the model

61 model.optimize()

62

63 # Get the optimal solution

64 optimal_solution = {e_id: x[e_id].X for e_id in x if x[e_id].X > 0}

65

66 # Output the results for the optimal solution

67 print("Optimal Solution:")

68 for e_id, flow in optimal_solution.items():

69 tails, heads = hyperedges[e_id]

70 print(f’Hyperedge {e_id}: Flow = {flow}, Heads = {heads}, Tails =

{tails}’)

Exercise 5

Your task is to find a (second best) solution, for which you shall guarantee that
not the same hyperedges as in the best found solution are used. Please first
formulate the additional decision variables and the additional constraints (keep
the objective function unmodified).

3.2 Energy barriers - Introduction and Exercise

Imagine you would know a value for each hyperedge that indicates how likely
or unlikely a reaction is to happen (think about the height of an energy barrier
height). For this, we introduce a value reid per hyperedge, which should be
considered as predefined constants per hyperedge for the following exercises.

Page 9

Daniel Merkle Algorithms in Cheminformatics, 2025

Exercise 6

We want to find pathways which minimize the energy barrier height of all hy-
peredges used. Your goal is to find solutions which minimize the max of all reid
for all hyperedges in a solution.

a)

As usual, introduce decision variables, constraints, and the objective function.

b)

Similar to exercises solved earlier, find a second solution, which uses a different
set of hyperedges compared to the optimal solution. Provide additional decision
variables and constraints.

Page 10

	Introduction
	Knapsack Problem Example

	Min-Max, Max-Min, Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Energy Barriers, Min-Max, and Enumeration of Solutions in CRNs
	Enumeration - Introduction and Exercise
	Energy barriers - Introduction and Exercise

